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ABSTRACT 

 
The increasing demand for cloud computing in the Internet of Things (IoT) device 

ecosystem has highlighted the need for a more suitable infrastructure. Edge and Fog 

environments have emerged as viable options, as they allow for computation to be 

performed closer to the relevant resources, thereby reducing latency. The dynamic nature 

of IoT traffic and the demand for low latency services further underscore the importance of 

efficient service placement, which is facilitated by Fog computing through the 

implementation of load balancing. In this study, the authors focus on two critical parameters 

for IoT devices: load balancing and Quality of Service (QoS) improvement. To address 

these concerns, the authors propose a decentralized, agent-based solution that uses edge-

to-cloud nodes to cooperatively manage the network's input load. The solution utilizes 

agents that generate potential request paths for resource allocation and choose the path that 

maximizes edge usage while minimizing service execution cost. The proposed solution is 

expected to effectively balance the input load throughout the network and reduce the cost-

of-service execution in the IoT device ecosystem. 
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Chapter-1 

 INTRODUCTION 

 
1.1 Introduction  

New age system design is far away from traditional monolithic architecture, 

utilising the microservices concept which not only distributes functionality but 

takes advantage of shared resources [1]. This enables continuous delivery and 

deployment of large-scale applications. These system designs deployed on 

cloud environments are extended to Edge-Fog computing environments which 

bring resources near the computation and find their best applications in the field 

of Internet of things (IoT) based applications. These applications are often 

latency sensitive and require a scalable Edge-Fog infrastructure [2,3]. Growth 

in heavy applications all around the globe expects a delay-sensitive cloud 

computing paradigm. Keeping in mind the upcoming use of 5G technology, 

edge computing made its way to facilitate storage on the cloud for devices to 

function optimally. Given a certain pool of users, there are edge servers located 

in a given area to provide for such need for space and data allocation processes. 

This helps users in offloading the impending bulky data to the nearby edge 

server deployed in the area to which the user is mapped.  

 

The IoT service placement problem is a problem that arises when trying to 

determine how to best distribute a service across a set of servers so that each 

server is not overloaded and the service as a whole can handle the load [4]. This 

problem is especially relevant in the context of the Internet of Things, where 

there may be a large number of devices making requests to the service all at 

same time [5,6,7].There are several different ways to approach this problem, but 

one common approach is to use a load-balancing algorithm. The proposed 

algorithm will take into account the number of requests that each server is 

receiving and then redistribute the load so that each server is handling a more 

equal number of requests. This can help to ensure that no single server is 

overloaded and that the service as a whole can keep up with the demand. Several 

different load-balancing algorithms can be used, and the best one to use will 
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likely depend on the specific details of the IoT service and the servers that it is 

running on. However, some common algorithms that could be used include 

round-robin, least-loaded, and least-connections. No matter which algorithm is 

used, the goal is to distribute the load as evenly as possible across the servers so 

that each one can handle the workload without being overwhelmed. This can 

help to ensure that the service can keep up with demand and provide a good 

experience to users. 

 

Load-balancing algorithms are used to distribute the load across servers, so that 

each server can handle a more equal number of requests. This helps to ensure 

that no single server is overloaded, and that the service as a whole can keep up 

with the demand. Several different load-balancing algorithms can be used, and 

the best one will likely depend on the specific details of the IoT service and the 

servers that it is running on. Round-robin, least-loaded, and least-connections 

are some of the common load-balancing algorithms that can be used. 

To address the IoT service placement problem, there are different techniques, 

including heuristic and metaheuristic algorithms. Heuristic algorithms are 

designed to provide a feasible solution in a reasonable amount of time but do 

not guarantee an optimal solution. Metaheuristic algorithms, on the other hand, 

are designed to find near-optimal solutions and can handle complex 

optimization problems. There are several metaheuristic algorithms that have 

been applied to the IoT service placement problem, including genetic 

algorithms, simulated annealing, ant colony optimization, and particle swarm 

optimization. 

 

As IoT devices become more prevalent, the amount of data generated by them 

increases exponentially. This data needs to be processed in real-time to enable 

near-instant decision-making. However, the traditional cloud computing 

paradigm does not provide the required low latency for such applications. This 

is where edge computing comes in, with its ability to bring resources closer to 

the data source, reducing latency and increasing processing speed. 

Edge computing involves deploying servers closer to the data source, which can 

be a device or a sensor. These servers are located in proximity to the data source, 
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providing low latency and reducing the load on the cloud. Edge computing also 

provides the advantage of reduced network bandwidth requirements, which can 

be significant in IoT applications. 

However, edge computing also presents its own set of challenges. For instance, 

it is difficult to determine how to distribute the IoT service across a set of servers 

so that each server is not overloaded and the service as a whole can handle the 

load. This problem is known as the IoT service placement problem and can be 

addressed using load-balancing algorithms. 

 

One of the load-balancing algorithms that can be used is the round-robin 

algorithm. This algorithm distributes requests evenly across servers by sending 

each request to the next server in the sequence. The least-loaded algorithm 

distributes requests to the server with the least amount of load. The least-

connections algorithm distributes requests to the server with the least number 

of connections. These algorithms ensure that each server is handling a more 

equal number of requests, reducing the likelihood of overloading any one server. 

In addition to load-balancing algorithms, metaheuristic algorithms such as 

genetic algorithms, simulated annealing, ant colony optimization, and particle 

swarm optimization can also be used to solve the IoT service placement 

problem. These algorithms are designed to find near-optimal solutions and can 

handle complex optimization problems. For instance, genetic algorithms mimic 

the process of natural selection to find an optimal solution. Simulated annealing 

simulates the annealing process of metals to find a solution that minimizes 

energy. Ant colony optimization mimics the behaviour of ants to find the 

shortest path between two points. Particle swarm optimization simulates the 

behaviour of particles to find the best solution. 

 

To make edge computing more efficient, it is also important to consider the 

physical placement of servers. For instance, servers should be placed in 

proximity to the data source to reduce latency. The number of servers should 

also be determined based on the workload and the capacity of the servers. 

Moreover, the architecture of the system should be designed in a modular way 

to enable scalability and ease of maintenance. 
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Another consideration in edge computing is security. Since edge computing 

involves deploying servers closer to the data source, there is a risk of data 

breaches. It is, therefore, important to ensure that the servers are secure and that 

the communication between the servers and the cloud is encrypted. Moreover, 

access to the servers should be restricted to authorized personnel only. 

 

In conclusion, edge computing is a promising technology for processing data 

generated by IoT devices. However, it presents its own set of challenges, 

including the IoT service placement problem. Load-balancing algorithms and 

metaheuristic algorithms can be used to solve this problem. Moreover, the 

physical placement of servers, the architecture of the system, and security 

considerations should also be taken into account to make edge computing more 

efficient and secure. As IoT applications continue to grow, edge computing will 

become even more important, and further research is needed to address the 

challenges it presents. 

 

1.2 Problem Statement  

IoT applications such as those used for smart homes, smart cities, and smart 

healthcare must be able to adapt to changing user behaviour, as users' actions 

may vary based on different factors. Additionally, many of these applications 

require timely responses.  Consider a city that uses IoT sensors to monitor and 

manage its transportation system, including traffic flow, parking availability, 

and public transportation routes. 

 

Internet of Things (IoT) is transforming many industries by enabling them to 

collect, process and analyse real-time data. One of the industries that IoT is 

having a significant impact on is the transportation industry. Smart cities are 

using IoT sensors to monitor traffic, parking availability, and public 

transportation to provide efficient transportation systems. However, providing 

high-quality service to the citizens requires the IoT sensors to ensure a high 

level of quality of service (QoS). 
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QoS is a measure of the overall performance of a system, including its ability to 

deliver data reliably, quickly, and with low latency. In the context of IoT 

applications, QoS is critical because many applications require real-time data to 

be delivered in a timely manner. For instance, in a smart city transportation 

system, real-time data on traffic flow, parking availability, and public 

transportation routes must be delivered quickly to enable efficient transportation 

systems. 

 

To achieve high QoS, IoT sensors must use QoS-aware protocols and algorithms 

that prioritize the delivery of critical data over less critical data. Prioritizing the 

delivery of critical data ensures that real-time information is delivered to the 

transportation management system in a timely and reliable manner. For 

example, in a smart parking system, information on parking availability is 

critical, and it needs to be delivered in real-time. If the information is delayed 

or unreliable, it can cause congestion and increase pollution levels. 

 

Moreover, IoT sensors must be able to adapt to changes in network conditions 

and traffic load to ensure optimal performance and QoS. For instance, in a smart 

transportation system, the amount of data that needs to be delivered varies 

depending on the time of day and the day of the week. During peak hours, there 

may be a higher demand for real-time data, and the network may be congested. 

In this case, the IoT sensors must be able to adapt to the changing network 

conditions and traffic load to ensure optimal performance and QoS. 

Cost is another important parameter that needs to be considered when managing 

resources and allocating resources in IoT applications. In many cases, the cost 

of deploying and maintaining an IoT system can be significant. Therefore, it is 

essential to use cost-effective solutions that can deliver high QoS. 

 

One approach to reducing the cost of IoT systems is to use edge computing. 

Edge computing enables data to be processed and analysed at the edge of the 

network, closer to the data source. By processing and analysing data at the edge 

of the network, the amount of data that needs to be transmitted over the network 
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can be reduced, which can reduce the cost of the system. Moreover, edge 

computing can improve QoS by reducing latency and increasing reliability. 

 

In conclusion, IoT is transforming many industries, including the transportation 

industry. Smart cities are using IoT sensors to monitor traffic, parking 

availability, and public transportation to provide efficient transportation 

systems. To achieve high QoS, IoT sensors must use QoS-aware protocols and 

algorithms that prioritize the delivery of critical data over less critical data. 

Moreover, IoT sensors must be able to adapt to changes in network conditions 

and traffic load to ensure optimal performance and QoS. Cost is another 

important parameter that needs to be considered when managing resources and 

allocating resources in IoT applications. Edge computing is a cost-effective 

solution that can improve QoS by reducing latency and increasing reliability. 

 

To provide an efficient transportation system, the IoT sensors need to ensure a 

high level of QoS, such as low latency and high reliability, to deliver real-time 

information to the city's transportation management system. For example, if the 

sensors providing information on parking availability are slow or unreliable, 

drivers may waste time and fuel looking for parking spots, resulting in traffic 

congestion and increased air pollution. To address this problem, the IoT sensors 

can use QoS-aware protocols and algorithms that prioritize the delivery of 

critical data, such as parking availability and traffic flow, over less critical data, 

such as weather information. These protocols can also adapt to changes in 

network conditions and traffic load to ensure optimal performance and QoS. 

 

Given the above application scenario, it is very vital to manage resources and 

allocate the resources in consideration of two vital parameters which are Cost 

and Quality of service. 

 

1.3 Objectives  

a) To propose a solution based on distributed agents for plan generation 

and selection for service placement on IOT devices. 
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b) To produce a load balancing technique in the Fog-Cloud environment 

which minimised cost related to service execution. 

1.4 Proposed Methodology  

In the rapidly evolving landscape of cloud-fog computing, the deployment of 

distributed agents offers a promising approach to enhance the scalability, 

reliability, performance, and security of complex and demanding applications. 

With the exponential growth of data and the increasing complexity of 

applications, traditional centralized systems have become inadequate in 

handling large workloads and providing efficient processing. Distributed 

agents, on the other hand, can be deployed across the cloud-fog environment to 

improve the overall efficiency of the system. 

 

The scalability of the system can be improved by deploying distributed agents 

that can handle large workloads effectively. The distribution of agents across 

the cloud-fog environment ensures that the load is distributed evenly, preventing 

any single agent from becoming overloaded. This, in turn, enables the system 

to process a large number of requests simultaneously, improving its scalability. 

Furthermore, the deployment of distributed agents enables the system to 

continue operating even if one agent fails, enhancing reliability and reducing 

the risk of downtime. This approach also provides flexibility, as distributed 

agents can be designed to be highly adaptable to changes in workload or 

environmental conditions, enabling more efficient resource allocation and task 

delegation. 

 

In addition to scalability and reliability, distributed agents can also enhance the 

performance of the system. By enabling faster and more efficient processing, 

distributed agents can improve the overall responsiveness of the system. The 

redundancy provided by the deployment of agents in multiple locations also 

improves the resilience of the system, ensuring that critical services remain 

available even if one part of the cloud-fog environment experiences a failure. 

This approach also enables the system to handle dynamic workloads more 

effectively, as distributed agents can be designed to adjust their processing 

capabilities in response to changing workload conditions. 
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Moreover, the deployment of distributed agents can enhance the security of the 

system by using encryption, authentication, and other security measures to 

prevent unauthorized access and protect sensitive data. By decentralizing the 

system, the risk of a single point of failure is reduced, making it more difficult 

for malicious actors to disrupt the system. Furthermore, distributed agents can 

be designed to operate in a more secure manner than traditional centralized 

systems, as they can leverage the latest security technologies and techniques to 

prevent attacks and breaches. 

 

In summary, the deployment of distributed agents in cloud-fog environments 

offers numerous benefits, including scalability, reliability, performance, and 

security. These benefits make distributed agents well-suited for complex and 

demanding applications, as they can enhance the efficiency and adaptability of 

the system. By leveraging the advantages of distributed agents, organizations 

can build more robust and scalable cloud-fog environments that can adapt to 

changing workloads and environmental conditions, while maintaining high 

levels of performance and security. As the use of cloud-fog environments 

continues to grow, the deployment of distributed agents will become 

increasingly important in enabling organizations to achieve their goals and 

deliver high-quality services and applications to their customers. 

 

In summary, the benefits of distributed agents in cloud-fog environments make 

them well-suited for complex and demanding applications. They can improve 

the efficiency, reliability, and security of the system, enabling it to better support 

a wide range of services and applications. By leveraging the advantages of 

distributed agents, organizations can build more robust and scalable cloud-fog 

environments that can adapt to changing workloads and environmental 

conditions, while maintaining high levels of performance and security. 

 

As we see in the figure 1, A model for depiction of plan generation and selection 

for service placement is made using Distributed Agents. 
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Service placement is a critical function for managing the Internet of Things 

(IoT). By understanding the service requirements of devices and applications, 

and mapping these to the capabilities of available IoT platforms, service 

providers can ensure that devices and applications are able to interoperate and 

function as intended. 

 
 

Figure 1: Plan generation and selection for service placement. 

 

IoT service providers need to consider a wide range of factors when selecting 

an IoT platform, including:  

 

1.  The specific service requirements of those devices and applications.  
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2.  The scalability and capacity requirements of the platform. 

3. The security and privacy requirements of the platform.  

4.  The cost of the platform. 

5.  The types of devices and applications that will be connected.  

 

Once an IoT platform has been selected, service providers need to configure the 

platform to support the specific devices and applications that will be connected. 

This includes provisioning devices with the necessary credentials and 

configuring the platform to expose the required services. Service providers also 

need to consider how they will manage the IoT platform over time. This includes 

managing updates and patches, as well as monitoring platform performance and 

capacity. 

 

The edge-cloud system is a new type of cloud computing system that combines 

the benefits of both edge computing and cloud computing. It enables 

organisations to process data at the edge of their networks, close to where it is 

generated, and then store and analyse it in the cloud. This system provides a 

number of advantages over traditional cloud computing systems, including 

improved performance, reduced latency, and increased security. If we consider 

a cloud computing environment, it refers to direct access and communication 

which sets the nodes mapped as the nearest neighbours of the cloud. Before 

considering Edge/Fog environment as a possibility we take in account the inter-

communication between node networks created. 

 

1.5 Organization  

The report is organised as follows:  

• Chapter-02 outlines the existing related work in the field of Edge-Fog 

computing and IoT service placement in the edge-to-cloud 

infrastructure. It further presents the outputs which we eventually 

compare and discuss in this report. 

• Chapter-03 puts forward the system that is formulated to cater the IoT 

service placement problem and is designed to work so as to reduce 
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latency. This is where we cover the software requirement and load 

balancing factors. 

• Chapter-04 puts forward the analysis of the results in depth and also with 

content to existing work in the field.  

• Finally, Chapter-05 presents the conclusion of the study. It also contains 

the application contribution with future scope.  
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Chapter-2  

LITERATURE SURVEY 

 
In this section the authors have covered various studies related to edge user 

allocation problems [8] and solutions pertaining to the same. One of the key 

challenges in fog computing is how to efficiently allocate resources to edge 

users. This is especially challenging when the number of edge users is large and 

dynamic. Various resource allocation schemes have been proposed, but there is 

no clear consensus on which is the best approach. The edge user allocation 

problem is a problem that arises in the context of allocating users to edges in a 

network. The problem is to find a mapping of users to edges such that the sum 

of the weights of the edges allocated to each user is minimised. The problem is 

NP-hard [9]. IoT devices are becoming increasingly common, with many 

organisations using them to monitor and manage their operations. However, due 

to the large number of devices and the variety of services they offer, load-

balancing IoT service placement is becoming a challenge. One approach to 

solving this problem is to use a software-defined network (SDN) controller to 

dynamically adjust the placement of IoT services based on the current load. This 

would allow the system to automatically adjust the placement of services as the 

number and type of devices change, and as the load on the system changes. 

Another approach is to use a central database that keeps track of the number and 

location of devices, as well as the load on each device. This database could then 

be used to determine the best placement of services based on the current load. 

Whichever approach is used, it is important to consider the trade-offs between 

flexibility and performance. For example, if the system is too flexible, it may 

take longer to find an optimal solution. On the other hand, if the system is not 

flexible enough, it may not be able to adapt to changes in the environment. 

 

To reduce the delay suffered by services while adhering to capacity restrictions, 

the authors in [10] introduce a QoS-aware service allocation for fog 

environments. A multi-dimensional knapsack problem is used to describe this 
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goal, with the goal of simultaneously minimising the overall service execution 

delay and the load on the edge nodes. In [11], authors present a two-step 

resource management approach with the goal of using the fewest possible edge 

nodes while reducing the amount of time needed to deliver services. For each 

device, a pool of backup edge nodes and a home edge are first chosen. Finding 

the edge nodes that have the lowest latency between them and that device is 

their goal. The specified edge nodes are then used to host the necessary IoT 

services, ensuring the desired response time. A different project with the same 

objective as the ones listed in [11] and [10] has been proposed by researchers in 

[12].  According to a backtrack search algorithm and related heuristics that serve 

the goal, the recommended mechanism selects locations. The authors of [13]  

have offered a conceptual framework for service placement for the edge-to-

cloud system. Their objective is to increase edge node use while taking user 

constraints into account by using a genetic algorithm for optimization. In order 

to take advantage of Internet of Things nodes for IoT service execution, the 

authors introduce the concept of a fog cell, which is software that runs on IoT 

nodes. An edge-to-cloud control middleware that oversees the fog cells has also 

been introduced. Any associated fog cells or other control nodes are under the 

supervision of a fog orchestration control node. The latter enables IoT services 

to be managed separately from cloud nodes. 

 

In the rapidly evolving field of fog computing, resource allocation is a major 

challenge that researchers have been addressing. One of the main issues in fog 

computing is to allocate resources to edge users efficiently. The edge user 

allocation problem arises in the context of mapping users to edges in a network. 

The objective is to minimize the sum of the weights of the edges allocated to 

each user. This problem is NP-hard and becomes increasingly challenging as 

the number of edge users is large and dynamic. 

 

To address this problem, various resource allocation schemes have been 

proposed. However, there is no clear consensus on which approach is the most 

effective. For instance, one approach involves the use of a software-defined 

network (SDN) controller to dynamically adjust the placement of IoT services 
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based on the current load. The SDN controller would allow the system to 

automatically adjust the placement of services as the number and type of devices 

change, and as the load on the system changes. Another approach involves the 

use of a central database to keep track of the number and location of devices, as 

well as the load on each device. This database could then be used to determine 

the best placement of services based on the current load. 

 

Regardless of the approach used, it is important to consider the trade-offs 

between flexibility and performance. For example, a system that is too flexible 

may take longer to find an optimal solution, while a system that is not flexible 

enough may not be able to adapt to changes in the environment. Therefore, 

researchers have been exploring different solutions to this problem, such as 

QoS-aware service allocation, multi-dimensional knapsack problem, two-step 

resource management, and genetic algorithms. 

 

In computing networks, there may be instances where certain nodes experience 

low levels of activity while others are overwhelmed with the entire network 

load. This load imbalance can lead to various issues such as system and network 

failures, increased energy consumption, and longer execution times. To prevent 

such problems, load balancing is essential to distribute the load evenly across 

all resources based on their capacity. This ensures that no resources are 

underutilized or overburdened in a fog environment. Load balancing is also 

necessary for cloud data centres to ensure efficient workload distribution, 

optimal functioning, and prevention of overload and deadlock issues. 

The primary objective of load balancing is to distribute a significant amount of 

data on servers, thus allowing resources to be utilized effectively. It possesses 

various characteristics, such as even workload distribution, efficient resource 

usage, improved system performance, reduced energy consumption, enhanced 

user satisfaction, and shorter response times. Load balancing functions include 

the efficient distribution of network loads or client requests across multiple 

servers, active nodes that respond to end-user requests for high availability and 

reliability, and server flexibility that permits the addition of servers to the 

network when required. 
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The increasing use of IoT in real-time applications has led to a greater need for 

load balancing in the fog environment. Load balancing can improve resource 

utilization and user satisfaction, leading to enhanced system performance and 

reduced operational costs. It ensures that resources are not overloaded or 

underutilized by distributing the workload evenly among processors. In cloud-

fog architecture, fog nodes receive bulk requests from users, and the load 

balancer at the fog layer is responsible for distributing the tasks among 

processing nodes. 

 

The primary goal of load balancing is to address the challenges faced by 

overloaded resources in the fog layer. Tasks assigned to virtual machines may 

be either reliant or independent on them, and the load is categorized based on 

CPU, storage device, and network load. Load balancing involves detecting 

overloaded and underutilized nodes and redistributing the workload among 

them. Proper utilization of fog resources can improve system performance, and 

these resources can be either hardware or virtual. The load balancer allocates 

tasks to physical machines, which in turn assign them to virtual machines, and 

transfers the workload between physical or virtual machines. 

 

In one study, researchers introduced a QoS-aware service allocation for fog 

environments that aimed to minimize overall service execution delay and the 

load on the edge nodes. They used a multi-dimensional knapsack problem to 

describe this goal. In another study, a two-step resource management approach 

was proposed with the goal of using the fewest possible edge nodes while 

reducing the amount of time needed to deliver services. A pool of backup edge 

nodes and a home edge were first chosen for each device, and then the edge 

nodes with the lowest latency between them and that device were selected. 

These nodes were used to host the necessary IoT services to ensure the desired 

response time. Another project with similar objectives proposed a backtrack 

search algorithm and related heuristics to select locations. 
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Researchers also proposed a conceptual framework for service placement in the 

edge-to-cloud system, with the aim of increasing edge node usage while taking 

user constraints into account. They used a genetic algorithm for optimization, 

which helped to manage IoT services separately from cloud nodes. Additionally, 

the concept of a fog cell, which is software that runs on IoT nodes, was 

introduced to take advantage of IoT nodes for IoT service execution. An edge-

to-cloud control middleware that oversees the fog cells was also proposed, along 

with a fog orchestration control node that supervised any associated fog cells or 

other control nodes. 

 

Author in [14] main goal is to increase the number of edge node-served services 

while maintaining QoS standards such as response time. They employ an 

algorithm to overcome the issue that makes use of validation, rounding, and 

relaxation. Authors in [15] offer a service placement strategy that maximises the 

amount of services assigned to edge nodes, similar to the earlier efforts [16], 

[17]. The suggested method uses context data from the edge nodes, such as 

location, response time, and resource consumption, to distribute services. 

Workload distribution is defined by [18] as an interaction between edge-to-

cloud nodes. Investigated and roughly resolved is the trade-off between power 

usage and transmission delay in the interaction. A relevant framework for 

understanding the cooperation between edge-to-cloud nodes is provided by 

simulation and numerical results. For a three-layer fog-cloud architecture made 

up of the fog device, fog server, and cloud layers, authors in [19] present for 

resource allocation. The processing time, bandwidth, and reaction time of the 

available resources are ranked according to three factors in order to address the 

time constraints imposed by dynamic user behaviour in resource provisioning. 

These resources are then distributed in a hierarchical and hybrid way according 

to the requests that were received. DRAM is a different load-balancing resource 

allocation mechanism that authors have [20] offered. DRAM uses service 

migration after allocating network resources statically to create a dynamically 

balanced workload across edge nodes. 
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In order to supply IoT services, authors in [21] create an Integer Linear 

Programming (ILP) problem that balances two goals: minimising deployment 

cost (which includes the costs of computation, memory, and data transfer) and 

raising service acceptance rate. Greedy Randomised Adaptive Search 

techniques [22], which iteratively minimise the provisioning cost while load-

balancing networked nodes, are used in the suggested solution. In order to 

reduce the processing time of compute tasks in fiber-wireless enhanced vehicle 

edge computing networks, authors in [23] suggest a task offloading architecture. 

Two strategies based on software-defined networking and game theory are 

given to achieve the load-balancing of the computation resources at the edge 

servers. For each vehicle to successfully complete its computation task, these 

schemes, namely a nearest offloading algorithm and a predictive offloading 

algorithm, optimise the offloading decisions for local execution, offloading to a 

Multi-access Edge Computing (MEC) server connected to roadside units, and 

offloading to a remote cloud server. In the table 1, the authors have made a 

drawn a comparison to distinguish existing work in different categories 

including QoS, Load Balancing, Techniques employed and whether the 

Distributed Network as used or not.  

 

The emergence of the Internet of Things (IoT) and the ubiquitous adoption of 

smart devices have transformed virtually every industry, making it imperative 

to provide advanced services that are scalable, reliable, and high-performing. 

The integration of IoT and Cloud Computing (CC) has given rise to cloud IoT, 

a new paradigm that aggregates, stores, and processes IoT-generated data. While 

cloud IoT brings immense opportunities, it is also constrained by bandwidth, 

latency, and connectivity issues. This has led to the development of Edge and 

Fog Computing (FC), where computing and storage resources are located at the 

edges, closer to the source of data. The hierarchical and collaborative edge-fog-

cloud architecture brings significant benefits, as it enables the distribution of 

computation and intelligence, including AI, ML, and big data analytics, to 

achieve optimal solutions while satisfying constraints such as the delay-energy 

trade-off.  
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Despite the advantages of edge-fog-cloud computing, its implementation poses 

several challenges, including design, deployment, and evaluation. To provide a 

comprehensive understanding of this paradigm, this paper presents an in-depth 

tutorial and discusses the main requirements, state-of-the-art reference 

architectures, building blocks, components, protocols, applications, and other 

similar computing paradigms. The paper also presents a holistic reference 

architecture for edge-fog-cloud IoT, discussing the major corresponding design 

and deployment considerations, including service models, infrastructure design, 

provisioning, resource allocation, offloading, service migration, performance 

evaluation, and security concerns. 

 

In addition to these considerations, the paper also explores the role of privacy-

preserving, distributed, and collaborative analytics, as well as the interaction 

between edge, fog, and cloud computing. Finally, the paper reviews the main 

challenges in the field of edge-fog-cloud computing that need to be tackled to 

realize the full potential of IoT. 

 

Several studies have investigated the integration of IoT and CC, resulting in the 

development of cloud IoT. However, cloud IoT faces challenges such as latency, 

connectivity, and bandwidth. To overcome these challenges, edge and fog 

computing have emerged, offering distributed computing and storage resources 

closer to the data source. This hierarchical architecture enables the distribution 

of computation and intelligence, leading to optimal solutions while satisfying 

constraints such as the delay-energy trade-off. 

 

Despite the benefits of edge-fog-cloud computing, several challenges remain, 

including design, deployment, and evaluation. This paper provides a 

comprehensive insight into the paradigm by presenting a tutorial and discussing 

various aspects, including reference architectures, building blocks, components, 

and protocols. Additionally, it explores the role of privacy-preserving, 

distributed, and collaborative analytics, as well as the interaction between edge, 

fog, and cloud computing. Finally, the paper reviews the main challenges in the 
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field of edge-fog-cloud computing that need to be addressed to fully realize the 

potential of IoT. 

 

In conclusion, this paper [24] presents a thorough literature review of edge-fog-

cloud computing, highlighting the benefits and challenges of this paradigm. It 

offers a comprehensive understanding of the underlying technologies and 

presents a holistic reference architecture for edge-fog-cloud IoT. By discussing 

the major design and deployment considerations and exploring the role of 

privacy-preserving, distributed, and collaborative analytics, this paper provides 

opportunities for more holistic studies and accelerates knowledge acquisition in 

the field. 

 

The paper identifies the dynamic service placement problem, which addresses 

the adaptive configuration of application services at edge servers to facilitate 

end-users and those devices that need to offload computation tasks. The paper 

presents a systematic literature review of existing dynamic service placement 

methods for MEC environments from networking, middleware, applications, 

and evaluation perspectives. The review reveals research gaps in the big picture 

and identifies eight research directions that researchers follow. 

 

With the advent of cloud-based applications such as mixed reality, online 

gaming, and healthcare, there is a need for efficient infrastructure management 

to provide a cloud-like environment for end-users. MEC extends the cloud 

computing paradigm and leverages servers near end-users at the network edge 

to provide a cloud-like environment, but the optimum placement of services on 

edge servers plays a crucial role in the performance of such service-based 

applications. 

 

The review [25] then investigates dynamic service placement methods from a 

middleware viewpoint, which includes different service packaging technologies 

and their trade-offs. The review categorizes the research objectives into six main 

classes, proposing a taxonomy of design objectives for the dynamic service 

placement problem. The paper also introduces the applications that can take 
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advantage of dynamic service placement and investigates the evaluation 

environments used to validate the solutions, including simulators and testbeds. 

Finally, the paper compiles a list of open issues and challenges categorized by 

various viewpoints. Overall, this literature review provides a comprehensive 

insight into the dynamic service placement problem in MEC environments and 

identifies future research directions. 

 

QoS is the primary concern in dynamic service placement methods from an 

application viewpoint, including QoS levels and factors. Application QoS can 

typically be categorised into three levels . The first level is guaranteed services 

(hard QoS) that have strict hard real-time QoS guarantees. This level is suitable 

for safety-critical applications such as remote surgery. The second level is soft 

QoS that does not require hard real-time guarantees but needs to reconfigure 

and replace failed services. Finally, the last level is the best effort, where there 

are no guarantees when a service fails. According to the surveyed papers, time-

related QoS factors receive much attention compared to others. Some of these 

factors, such as application response time and user-perceived latency, are 

applied to both soft QoS and hard QoS. Other factors such as the worst 

application completion time and the number of applications in outage focus on 

hard QoS. The next group of QoS factors concentrates on throughput and 

resource utilisation, namely processing, network, and energy resources. It shows 

how effectively the edge nodes are being used and that the load is being spread 

evenly across them, and no one edge node is overloaded. Modern applications, 

such as augmented reality and autonomous vehicles, have massive network 

throughput. Energy efficiency is a concern to both users and edge infrastructure 

providers. Security is another QoS factor that is addressed in a few work. With 

the new legislation, such as GDPR, privacy concerns are becoming as essential 

as other security factors when developing a service placement method. MEC 

enables the processing of exabytes of data near where it is required and 

generated. Such proximity benefits applications from different domains as they 

can address challenges regarding data volume, interoperability, and latency. In 

the following, we review these application domains that can benefit from 
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dynamic service placement mechanisms to address these challenges effectively 

and efficiently use the available resources in MEC architectures. 

 

The agent-based approach is a real-time strategy that involves assigning tasks 

to servers based on their current load, as determined by their respective agents. 

[45] proposed an agent-based automated service composition (A2SC) technique 

for resource provisioning in cloud computing, with a focus on reducing virtual 

machine costs and ensuring equal resource distribution across four data centres 

with different platforms. They employed Java to obtain experimental results and 

aimed to provide efficient service allocation in the data centres. 

 

[26] proposed a multi-agent-based offloading technique for mobile fog 

computing, which uses reinforcement learning to minimize service delivery 

latency to mobile users. The mobile codes are deployed on geographically 

distributed mobile fogs, with agents serving as entities that have prior 

knowledge of the environment and learn from it. The goal is to reduce execution 

time and improve mobile user access to services, with simulation results 

obtained using OmNet++. 

 

[27] developed an agent-based task assignment approach for load balancing in 

cloud computing, incorporating principles of fair competition and dynamic 

adjustment for task allocation to improve resource allocation and utilization. 

They used CloudSim to obtain simulation results, which showed an increase in 

processing time with this technique. 

 

In 2017, [28] introduced cooperative load balancing (CooLoad) for fog 

computing environments. The approach involved forwarding requests to 

another node when a processing node was already fully occupied, resulting in 

improved quality of service and equal load distribution. 

 

Similarly, [29] proposed a scalable and dynamic load balancer (SLDB) for 

mobile edge computing. The SLDB algorithm employed minimal perfect 

hashing to optimize performance and reduce memory consumption. The Data 
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Plane (DP) of SLDB considered fitting data into the cache to improve 

processing speed. 

 

In 2018, Rafque et al. [30] introduced a new bio-inspired hybrid algorithm 

(NBIHA) for load balancing in fog environment. This algorithm reduces the 

average response time and energy consumption by employing efficient task 

scheduling. The proposed system architecture has three layers: the client layer, 

the fog layer containing the scheduler, and the cloud layer with data centers. 

The scheduling of tasks is performed using meta-heuristic particle swarm 

optimization (MPSO), and simulation results are obtained using iFogSim. 

Arshad et al. [31] evaluated and analysed two nature-based algorithms called 

Pigeon-inspired optimization (PIO) and Binary bat algorithm (BBA) for 

reducing the energy consumption of cloudlets. A three-layer architecture has 

been proposed, with smart homes in the first layer, cloudlets in the second layer, 

and cloud servers in the third layer. The energy consumption of smart meters at 

smart homes is measured for bill estimation. 

 

In 2019, Fahs et al. [32] proposed a routing algorithm for the fog environment 

to reduce latency and ensure equal load distribution. The proposed proximity-

aware system is based on Kubernetes, and it helps to reduce the service access 

time from sender to receiver by equally distributing the load. Javaid et al. [33] 

proposed a cuckoo search load balancing algorithm, which uses a combination 

of Levy walk distribution and flower pollination to optimize the response time 

and processing time of fog and cloud environments. Cost is also considered, and 

efforts are made to reduce the cost of data transfer, microgrids, VMs, and the 

total cost. Khattak et al. [34] proposed a fog-cloud server-based architecture to 

achieve proper utilization of all resources in E-healthcare. They aimed to 

distribute equal load among all servers by shifting the load from overloaded 

servers to the ones having less load. Parameters like latency, load balancing, 

QoS, and bandwidth were considered, and simulation results were obtained 

using iFogSim. 
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In 2020, Talaat et al. [35] proposed a resource allocation-based load balancing 

approach that uses reinforcement learning to handle incoming requests by 

measuring server loads. The workload is distributed among all available 

resources for their appropriate utilization, and a three-layer fog-cloud-based 

architecture is proposed for health care. Kaur et al. [36] proposed a load 

balancing approach based on the equal distribution of workload in a three-tier 

architecture of fog-cloud to reduce energy consumption, cost, and processing 

time in the fog-cloud environment. The proposed approaches are implemented 

and compared with existing round-robin and throttled algorithms using a cloud 

analyst simulation tool. Bhatia et al. [37] proposed a quantumized approach to 

task scheduling in the fog environment, which distributes the workload among 

all fog nodes to improve system performance and reduce execution delay. 

iFogSim is used to show simulation results. 

 

In [1,2, 3, 4, 5, 12, 13,43,44], the authors note that Both QoS and load balancing 

are not considered except in one case of [44], Meanwhile the technique and 

simulations are very diverse. 

 

Table 1: Comparison of relevant literature. 

Author(s) Quality 

of 

Service 

Load 

Balancing 

Methodology Distributed 

Mahmud et.al 

[1] 
✓ - Deadline based 

dynamic allocation 
- 

Li et.al [2] ✓ ✓ Clustering & 

Hierarchical Load 

Balancing 

- 

Ferretti et.al [3] ✓ - Workload 

Allocation Based 

on delay & power 

consumption 

- 
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Aburukba et.al 

[4] 
✓ - Task Placement 

Based on latency, 

energy 

consumption 

& operational cost 

- 

Songhorabadi 

et.al [5] 
✓ ✓ Software Defined 

Networking(SDN) 

based on load 

balancing task 

offloading 

- 

Yousefpour 

et.al[43] 
✓ - FOGPLAN - 

Xia et.al [12] ✓ - First Fit - 

Skarlat et.al 

[13] 
✓ - Decentralized 

approach to data 

processing and 

resource 

provisioning 

- 

Kapsalis et.al 

[44] 
✓ ✓ Fog Based 

Implementation 
✓ 

 

The review of literature on dynamic service placement methods shows that only 

a few of these methods adopt specific service packaging techniques. Moreover, 

only a small fraction of these methods consider the costs associated with 

transferring service instances, such as the time required to download instances, 

the necessary bandwidth, and launch time. This lack of attention to these critical 

factors raises concerns about the practicality of these methods. The survey also 

indicates that most methods assume heterogeneity in both edge servers and 

services, but they do not give enough attention to privacy and security issues 

and service inter-operation. These research directions are crucial, especially in 

light of the increasing use of micro-service architecture and growing concerns 

over GDPR. The analysis of design objectives indicates that the most popular 
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objective is improving service-level QoS, with most researchers proposing 

additional objectives alongside QoS improvement. However, it is also essential 

to investigate the method's overheads on various resources, such as processing, 

bandwidth, and energy and minimize them as secondary objectives. From a 

resource management perspective, the processing resource is the most critical, 

while energy and memory are the least focused. With the growing trend towards 

reducing the carbon footprint by cloud infrastructure and edge servers, it is vital 

to investigate the energy efficiency of dynamic service placement methods. 
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Chapter-3  

SYSTEM DESIGN & DEVELOPMENT 

 
In this section, application model is introduced for improving load balancing 

and Quality of Service (QoS) in the Fog-Cloud environment. A simple working 

of fog computing technique is displayed in Figure 2. Furthermore, the overall 

system architecture for resolving the problem is also described. 

 
 

Figure 2: Basic working of edge computing  
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3.1 Application Scenario 

In this section step wise implementation and comparative study procedure is 

explained:  

 

a) Create infrastructure using multiple networks with heterogeneous edge-

to-cloud nodes. 

b)  Receive input workload (IoT services/tasks).  

c) Distribute input workload over edge nodes. 

d) Implement the proposed technique by generating potential plans for 

each node.  

e)  Use the First Fit strategy.  

f)  Use the Cloud approach.  

g)  Keep track of outcomes for analysis (for the evaluation several varied 

parameters are considered that consist of: size of the network, type of 

topology, workload distribution method, lambda values, and host 

proximity). 

 

3.2 Dataset 

The simulation considers Google Borg compute clusters trace v3 and divides it 

into a 5-min time interval [27]. The dataset presents: 

 

• Informative histograms on CPU usage (per 5-minute period) 

• Data about alloc sets (job specific shared resource reservations) 

• Explanation on master/worker relationship 

 

An alloc set is a set of reserved resources (alloc instances) into which jobs can 

be scheduled, by placing a job’s tasks inside the alloc instances. Alloc sets 

represent 20% of the total CPU allocations and 18% of the RAM. 15% of the 

jobs are marked to run in an alloc set, most of which (95%) are from the 

production tier. Jobs within allocs have a higher average memory utilization 

(73%) than other jobs (41%) [42].  
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Table 2: Symbols Used in the Study. 

Symbol Meaning 

𝛥 Binary decision w.r.t. fog nodes 

𝐹 Set of fog nodes available in the given network 

𝑓 Fog node 

𝛩 Total available resources 

𝛷!,# Total CPU utilization for plan 𝜌 

𝛷$,# Total memory utilization for plan 𝜌 

M Overall memory utilization (in bytes) 

T Overall CPU utilization (in MIPS) 

m Memory utilization per plan 

𝑡 CPU utilization per plan 

z Traffic rate (in MIPS) 

C Processing capacity of fog nodes 

𝑅 Total services available 

𝑟 Set of services requested from IoT devices 

𝜌 Best possible solutions 

𝑃 Set of service allocation plans 

j Iterations to get best possible local solution 

p Solution in iteration j 

𝜅 Latency vector for placement algorithm 

𝜅% Latency per placement plan 

𝜔 Set of waiting time for 𝑟 services 

𝜔% Waiting associated to 𝑖th requested service 

W Waiting time for dynamic set of services 

𝛷&,# Total cost for plan 𝜌 
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The 5-minute recording intervals are taken as periods and divided into small 

sets for simulation purposes. Here it has been assumed and configured deadlines 

in accordance with the assumed IoT devices in the given dataset. Number of 

various services considered are 40, numbered (0-39) and the target edge node 

to which the task is propagated. The tasks are going to be input to the networks 

with different settings. The symbols used in the study are shown in Table 2.  We 

have 3 network graphs with the size set {200,400,1000}. So, the tasks are 

assigned to different edge node's id based on the given network size. Borg 

measures CPU in internal units called “Google compute units” (GCUs): CPU 

resource requests are given in GCUs, and CPU consumption is measured in 

GCU-seconds/second. One GCU represents one CPU-core’s worth of compute 

on a nominal base machine. Table 3 presents a overall view of the dataset.  

 

The squared coefficient of variation (2) [43] where:  

 

σ2 = variance/mean2 

 

The high σ2 means that the dataset positions probability of high queueing delay 

even when the system load is low. It is known that when σ2 is high, there is a 

wide range of job sizes, which helps us test our proposed solution in a variable 

environment. 

 

The real production traces assist in informing job designs on the basis of 

common jobs and resource requirements. On clustering similar jobs to study 

their nature, the dataset reflects on its ability to cater while demonstrating 

scheduling techniques which handle large spikes in job arrival time. The dataset 

considers CPU and memory utilization as they are bottleneck resources [27]. 

Google cluster trace is used to identify the resource capacity for each node. With 

12,500 workstations, the Google cluster can handle 12 MB jobs. The 89354 

tasks in the profiles that were taken into account for this evaluation. Each 

network contains 11 different sorts of nodes: "10 varieties of fog nodes + one 

type of cloud node. ‘One edge node is assigned to each input job from the 
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dataset. The task's assigned node's id is already set using beta distributions and 

random numbers. 

 

Machine types, their probabilities, and capacities regarding to Google cluster 

data: 

Table 3: Google Cluster database categorization for node network. 

Class Type Colour CPU Memory Probability 

Class B1 Fog Colour: pink CPU: 0.5 MEM:0.03 prob= 0.0004 

Class B2 Fog Colour: pink CPU:0.5 MEM:0.06 prob=0.00008 

Class B4  Fog Colour: violet CPU:0.5 MEM:0.12 prob=0.00416 

Class A Fog Colour: violet CPU:0.25 MEM:0.25 prob=0.01008 

Class B6 Fog Colour: purple CPU:0.5 MEM:0.25 prob=0.30904 

Class B7 Fog Colour: purple CPU:0.5 MEM:0.5 prob=0.53456 

Class B5 Fog Colour: blue CPU:0.5 MEM:0.75 prob=0.08008 

Class B3 Fog Colour: blue CPU:0.5 MEM:0.97 prob=0.0040 

Class C2 Fog Colour: blue CPU:1 MEM:0.5 prob=0.00024 

Class C1 Fog Colour: blue CPU:1 MEM:1 prob=0.0636 

 

 

3.3 System Description 

The authors have formulated the problem for a given set of targeted IoT services 

which have certain defined requirements which correspond to the edge-to-cloud 

nodes, both of which will be mapped according to the best suited environment 

while minimizing the cost-of-service execution. The authors assume minimal 

information about the IOT devices considered in this network. The Resource 

accessing mechanism for IoT devices in Fog- Edge environment is shown in 

Figure 3. 
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Figure 3: Resource accessing mechanism for IoT devices in Fog- Edge 

environment. 
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Avoidance of overloaded or under loaded nodes result in better outcomes and 

balanced network while improving QoS. 

The request handling flow works in the following manner:  

 

1. Establishing connection between base server and IoT devices via LAN 

2. Collected requests being redirected towards load balancer for 

distribution of incoming workload 

3. Edge and Fog architecture as a part of cloud computing environment, to 

which requests are & being redirected to fulfil the purpose as shown in 

Figure 2. 

4. Returning the computed results back to respected server connected to 

IoT devices 

We deal with overall cost which consists of three major factors which are: 

(i) number of deadline violations,  

(ii) number of services unavailable, and ( 

(iii) traffic management.  

The first two effect the Quality of Service (QoS) while the last one implicates 

poor network performance. So, we take: 

 

𝛷𝑐, 𝜌: 𝑡𝑜𝑡𝑎𝑙𝑐𝑜𝑠𝑡𝑓𝑜𝑟𝑝𝑙𝑎𝑛𝜌 

Where plan 𝜌 refers to an outcome. 

Such stringent latency requirements are high in demand with growing network 

technology and user density in populated areas. The mapping of IoT and mobile 

devices’ requests with different resource demands from the various 

heterogeneous servers around can be an extensive task considering that 

scalability is another factor in case. IoT devices not only generate latency-

sensitive traffic but also have variations. Hence such services need to be held 

and run near data sources which is achieved by the fog-edge cloud environment. 

These fog nodes have certain defined capacity to host requested services and 

run to expand the edge network by cooperating and work with independent IoT 

services (as assumed here). 
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The demands are sent from fog nodes to cloud servers over a WAN that spans 

a sizable geographic area from the edge to the core network. Contrarily, IoT 

queries are sent across a local area network to edge nodes, which are typically 

situated close to end devices (LAN). In contrast to the WAN, the LAN 

communication delay might therefore be eliminated.  

 

The total cost function is defined around two quantities which are: memory 

utilization and CPU utilization. This can be defined as: 

 
𝛷&,# = 𝛷!,# + 𝛷$,# 

Assuming suitable deadline range for IoT service in a given sector, 

 

𝐾': 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑝𝑙𝑎𝑛 

𝐾: 𝑙𝑎𝑡𝑒𝑛𝑐𝑦𝑣𝑒𝑐𝑡𝑜𝑟𝑓𝑜𝑟𝑝𝑙𝑎𝑐𝑒𝑚𝑒𝑛𝑡𝑎𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚 

To bring forward a solution to cover these grounds with the goal of improving 

overall placement optimization and service execution, we consider following 

constraints for hosting on respected 𝑟 

 

1. Limiting constraint to insist on at most one allocation per service 

 

0 ≤B𝛥%

|)|

%*+

≤ |R||𝑟| 

2. Placement constraint to ensure total placement decisions must be less 

than available resources 

B𝛷,,-

|.|

%*+

(𝛥') < 𝛩 ∀fj ∈ F 

We consider these two metrics for overall placement consideration with desired 

QoS parameters being handled. Furthermore, we understand the waiting time 

(𝑤% ) accounts the time period between receiving a placement request and 

decision making for its allocation. 𝑟% service requests that are received are 

forwarded to the fog node 𝑓/ for expected decision making on placement. This 
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involves queuing of these requests. So, we define another constraint for stable 

queuing and handling in load balancer for fog node 𝑓/ : 

 
z0,' < C0,' 

where z0,' is traffic rate for the given fog node and C0,' represents processing 

capacity of that particular fog node. 

 

Final Optimization: 

minT𝛷,,# + 𝛥U = minT𝛷1,# + 𝛷$,#U 

 

3.4 Methodology 

Service placement is a critical function for managing the Internet of Things 

(IoT). By understanding the service requirements of devices and applications, 

and mapping these to the capabilities of available IoT platforms, service 

providers can ensure that devices and applications are able to interoperate and 

function as intended. IoT service providers need to consider a wide range of 

factors when selecting an IoT platform, including: 

• The specific service requirements of those devices and applications 

• The scalability and capacity requirements of the platform 

• The security and privacy requirements of the platform 

• The cost of the platform 

• The types of devices and applications that will be connected 

Once an IoT platform has been selected, service providers need to configure the 

platform to support the specific devices and applications that will be connected. 

This includes provisioning devices with the necessary credentials and 

configuring the platform to expose the required services. Service providers also 

need to consider how they will manage the IoT platform over time. This 

includes managing updates and patches, as well as monitoring platform 

performance and capacity. 
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The rise of the Internet of Things (IoT) and the explosion of data generated from 

connected devices have created a need for a more efficient computing system 

that can handle the massive amounts of data generated. The traditional cloud 

computing model, where data is sent to a centralized location for processing and 

analysis, has limitations in terms of latency and bandwidth. As a result, a new 

computing paradigm called the edge-cloud system has emerged, which 

combines the benefits of both edge computing and cloud computing. 

In an edge-cloud system, data is processed and analysed at the edge of the 

network, closer to where it is generated. This is done by deploying small, low-

power computing devices, called edge nodes, at the network edge. These edge 

nodes are responsible for processing and analysing the data in real-time, and 

then sending it to the cloud for storage and further analysis. 

One of the major benefits of the edge-cloud system is improved performance. 

By processing data at the edge, organizations can reduce the amount of data that 

needs to be sent to the cloud, thereby reducing the latency and bandwidth 

requirements. This results in faster response times and improved overall system 

performance. 

Another advantage of the edge-cloud system is increased security. By 

processing and storing data at the edge, organizations can reduce the risk of data 

breaches and other security incidents. This is because the data is stored and 

processed locally, rather than being sent to a centralized cloud, which is a more 

attractive target for hackers. 

Furthermore, the edge-cloud system is also beneficial for reducing energy 

consumption. By processing data at the edge, organizations can reduce the 

amount of data that needs to be sent to the cloud, which reduces the energy 

consumption required for transmitting the data. 

In conclusion, the edge-cloud system is a new computing paradigm that 

combines the benefits of both edge computing and cloud computing. It enables 

organizations to process and analyse data at the edge of their networks, closer 

to where it is generated, and then store and analyse it in the cloud. This system 
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provides a number of advantages over traditional cloud computing systems, 

including improved performance, reduced latency, increased security, and 

reduced energy consumption. As the amount of data generated from connected 

devices continues to grow, the edge-cloud system will become increasingly 

important for organizations looking to improve their computing infrastructure. 

As shown in Figure 4, cloud-edge architecture, we receive input requests from 

various placed IOT devices. These requests sent by the client server are 

primarily processed by the load balancer at the periphery of the cloud 

environment. These requests are taken as input parameters in the process of 

creating an optimized plan in a node network. Multiple recursive calls generate 

an array of placement solutions to cater the QoS parameters considered which 

are memory utilization and cost efficiency. The intelligent load balancer creates 

various plans and selects the most efficient work load balance solution. The 

selected plan is then implemented while processing and returning the results of 

these requests back from the cloud. 
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Figure 4: Proposed architecture & algorithm placement in a Fog-Edge 

environment. 
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3.5 Proposed Algorithm 

In this section the authors have explained the algorithm in tabular and step wise 

form. 

Explanation for Step wise Implementation of the algorithm 

1. Define a function called 𝑠𝑒𝑟𝑣𝑖𝑐𝑒2𝑙𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛 that takes in two inputs: a 

set of services requested from IoT devices, r, and a set of network nodes, 

n. 

2. Initialize the service allocation plan, 𝑃, and the total cost, 𝛷&,#, to 0. 

3. Initialize two variables, i and j, to 0. 

4. Sort the services in r in terms of their waiting time, 𝜔%, in ascending 

order. 

5. Select neighbouring nodes from n and sort them in terms of their 

proximity value. 

6. Compute the network latency vector N by finding the minimum latency 

value L for each node. 

7. Start a while loop that runs as long as r is not empty. 

8. Select a node n[i] and a fog node fog node[j]. 

9. Check if fog node[j] satisfies the constraints in equations 2, 3, and 4. 

10. If the constraints are satisfied, update the service placement plan 𝑃, and 

update the total memory utilization, M, to be the total memory 

utilization for n[i]. 

11. Update the capacity for fog node[j] by subtracting the memory 

utilization for the selected service. 

12. If the leftover capacity of fog node[j] is less than or equal to the 

processing capacity, C f, j, set the binary decision variable, 𝛥[𝑖], to 1 and 

update the service placement plan 𝜌. 
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13. Move on to the next node, n[i+1], and fog node, fog node[j+1]. 

14. Repeat steps 9-13 until all services in r have been allocated. 

15. Return the set of best possible solutions, 𝜌. 

 

Pseudocode of Proposed Algorithm 

Input: {incoming set of requested services from IoT devices} 

Output: {P: set of possible solutions} 

Initialize service placement plan q 

h ← select |a| neighboring nodes from n; 

Sort h in terms of proximity value 

Initialize i, j 

while(a) do 

Select a and fj 

if(fj satisfies constraints) then  

 Update service placement plan q 

 Resource Utilisation vector R[i] ← Memory Demand M 

 Possible plans vector X[j] ← p (solution) 

end if 

else if (the cloud node (ck) has enough capacity) then 

X[i]← 1 

Update service placement plan q 

end if 
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Remove ai from a and fj from h 

 i++, j++ 

The algorithm presented above is a service placement algorithm designed for 

an edge-cloud system. The input to the algorithm is a set of requested services 

from IoT devices, and the output is a set of possible solutions represented by 

a service placement plan. 

The algorithm begins by initializing a service placement plan q. It then selects 

a neighbouring set of nodes, denoted by h, where a denotes the incoming set 

of requested services from IoT devices, and n is the set of available nodes. 

The nodes in h are then sorted in order of proximity value, indicating their 

distance from the IoT devices generating the data. 

The algorithm then initializes two counters, i and j, which are used to keep 

track of the resource utilization vector and the possible plans vector, 

respectively. The algorithm then enters a loop, where it selects a service from 

the incoming set of requested services, denoted by a, and a node from the 

sorted neighbouring set of nodes, denoted by fj. 

If the selected node satisfies the constraints of the requested service, the 

service placement plan q is updated, and the memory demand of the service 

is added to the resource utilization vector R[i]. The algorithm also generates 

a possible solution, denoted by p, and adds it to the possible plans vector X[j]. 

If the selected node does not satisfy the constraints of the requested service, 

the algorithm checks if the cloud node (ck) has enough capacity to process 

the service. If so, the possible plans vector X[i] is updated, and the service 

placement plan q is updated accordingly. 

Finally, the algorithm removes the selected service from the incoming set of 

requested services and the selected node from the neighboring set of nodes. 

The counters i and j are incremented, and the loop continues until all 

requested services have been placed in the service placement plan. 
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Overall, this algorithm is designed to optimize the placement of services in 

an edge-cloud system by considering the proximity of available nodes to the 

IoT devices generating the data, as well as the resource utilization of each 

node. By carefully selecting the appropriate node to process each service, the 

algorithm can improve the overall performance and efficiency of the edge-

cloud system. 
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Chapter-4  

EXPERMENTS & RESULT ANALYSIS 
 

In computer networking, topology refers to the way in which devices are 

connected to form a network. Different types of network topologies can be used 

depending on the requirements of the network and the types of devices being 

used. Each type of network topology has its own advantages and disadvantages, 

and the choice of topology depends on the specific requirements of the network. 

 
4.1 Topologies Considered 

• Barabasi Albert [46]- In network science, Barabási–Albert (BA) 

models are a class of random graphs that have found significant use in 

studying the topological properties of real-world networks. These 

models are named for Albert-László Barabási and Réka Albert, who 

introduced them in two papers published in 1999 and 2000. The BA 

model is an example of a scale-free network, a network whose degree 

distribution follows a power law. The model begins with a small number 

of nodes (typically m0 = m = 2) that are connected to each other by 

edges. At each time step, a new node is added to the network. This new 

node is then connected to m existing nodes in the network by edges. The 

nodes that the new node is connected to are chosen with a probability 

that is proportional to their degree. The result of this process is a scale-

free network with a power-law degree distribution. The exponent of the 

power law is determined by the parameter m. For m = 1, the exponent is 

2, and for m > 1, the exponent is 3. The BA model is a generalisation of 

the Erdős–Rényi random graph model, which also produces scale-free 

networks. The BA model is more realistic than the Erdős–Rényi model, 

as it produces networks with a power-law degree distribution that is 

often seen in real-world networks. 
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Figure 5: Erdos Renyi Model showing 200 node network topology 

• Watts-Strogatz [37]- The Watts–Strogatz model is defined on a ring of 

n vertices, where each vertex is connected to its k nearest neighbours (k-

1 if k is even). Each edge is then rewired with probability p, independent 

of the other edges. When p = 0, the resulting graph is a regular ring 

lattice. As p increases, the graph becomes less and less regular, until 

when p = 1 the graph is entirely random. The Watts–Strogatz model can 

be used to generate random graphs with arbitrary degree distributions, 

by rewiring each edge with probability p(1-k_i/2m), where k_i is the 

degree of vertex i and m is the sum of the degrees of all vertices. 

 

The network graphs for the Erdos Renyi model chosen models for a 200-node 

network are shown in Figure 5. 
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Figure 6: Watts Strogatz Model showing 800 node network topology. 

 

• Erdos-Renyi [39]- In the Erdős–Rényi model of a random graph, each 

edge is included in the graph with probability p, independently of all 

other edges. The resulting graph is then a random graph on n vertices. 

The network graphs for the Watts Strogatz model chosen models for a 800-node 

network are shown in Figure 6. Utilizing Java software that simulates a network 

of edge-to-cloud nodes, experimental assessment is carried out. In addition, 

GraphStream5 [26], a Java package, is used for graph modelling and analysis. 
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Figure 7: Barbasi Albert Model showing 400 node network topology 

 

The network graphs for the Barbasi Albert model chosen models for a 400-node 

network are shown in Figure 7. The Barabasi-Albert model, which has a highly 

heterogeneous degree distribution and great modularity, is used to analyze 

scale-free networks like the World Wide Web (w3). Low heterogeneity, short 

average pathways, and little clustering characterize the Erdos-Renyi model, 

sometimes referred to as a random network. Small-world networks modelled by 

Watts-Strogatz are architecturally extremely similar to social networks. After n 

- k steps, we arrive at an Erdos-Renyi random graph G (n, p). 

That is to say, the outcome is the same as if we had started with n isolated nodes 

and connected each pair of them using probability p. Watts Strogatz Generators 

small-world graph (n, k , beta). At the time of building, you must give values 

for n, k, and beta. Make sure n > >k > > log(n) > > 1 and that k is even. 

Additionally, as beta is a probability, its value must fall between 0 and 1. 
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Average of task demands (unit of resource) on 10 (5-min) periods from minute 

10 to minute 60 shown in Table 4: 

 
Table 4: Demands received per unit resource 

 CPU Memory Storage 

avg: 100 124 2 

max: 248 347 3.3 

 

The total capacity (unit of resource) of each network is: 

• Total CPU capacity: 704.0 

• Total Memory capacity: 792.5 

• Total storage capacity: 313.5 

In this scenario, the authors take zero assumptions and undertake minimal 

information regarding the subjected IoT devices in play. The only required 

information regarding IoT devices that we need is average propagation delay 

which we utilise while the placement of same on nodes. 

• Number of fog nodes is denoted by ∥ 𝐹 ∥. 

• Number of cloud nodes is denoted by ∥ 𝐶 ∥. 

• Total nodes= ∥ 𝐹 ∥+∥ 𝐶 ∥ (Network nodes |N|) 

• Total computation time= Time span between the moment an IoT 

device sends a request expecting something to the time it gets back the 

results. 

Simulation done on software for dynamic nodes and preparing for respective 

nodes is shown in figure 8 and figure 9.  
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Fig 8: Simulating h - 1000 over given system configuration 

 

 
Fig 9: Preparing various plans with respect to nodes 

 

 

4.2 Utilization 

4.2.1 Utilization (in terms of global cost) 

How evenly the burden is dispersed across the network is examined in this 

analyzed element. Load-balancing is not a function of the cloud method by 

design; hence it is not included in this assessment. Graph compares Proposed 
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Fog and First Fit for a 400-node network and shows how they vary in terms of 

utilization variance. 

4.2.2 Utilization of fog infrastructure 

According to their usage value, the nodes are arranged in each scenario in 

decreasing order. The fog resources are not used in the cloud method since all 

placements are made in the cloud node. First Fit shows that certain nodes are 

heavily loaded (utilization greater than 85%), while other nodes are hardly 

loaded (utilization 10%). This is a side effect of First Fit’s service placement 

approach since, despite the free capacity at distant fog nodes, these resources 

are not being used to their full potential. The utilization variance, or worldwide 

cost, in First Fit is 40% to 90% greater than distributed service placement 

approach in every case. This is due to First Fit’s policy of placing services 

wherever feasible on directly adjacent nodes. If not, they are sent to the cloud. 

In contrast, a host proximity constraint for distributed service placement 

approach can spread services to a wider range of nodes by limiting the number 

of hosts. By raising the host proximity threshold from one to infinity, the gap 

between the two techniques’ usage variances is less. A higher proximity value 

makes it possible to host services on more nodes, which lowers the usage 

variation in the Proposed Fog technique. Graph 7 shows a comparative analysis 

of memory utilization variation of the first fit and distributed agent-based 

solution under varied parameters. This shows the superiority of distributed 

agents. 

In Graphs 1, 2, 3, 4, 5 and 6 shows experimental results for varying nodes for 

in Barabasi Albert Topology and Erdos Renyi Topology. Every graph has 

dynamic nod and show how its task assigned reflect on the distribution 

pertaining to the topology.  
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Graph 1: Beta Task Distribution on network for 1000 nodes in Barabasi Albert 

Topology. 

 

Graph 2: Rand Task Distribution on network for 1000 nodes in Barabasi 

Albert Topology. 
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Graph 3: Rand Task Distribution on network for 200 nodes in Barabasi Albert 

Topology. 

 

The researchers utilized a modified version of the first fit algorithm to balance 

the workload distribution among underutilized and overutilized processors in 

MCC. The study revealed that the distributed agent-based approach was more 

effective than the first fit algorithm in the cloud, as evidenced by the results 

presented in Tables 5 and 6. Furthermore, a histogram was generated in Graph 

8, which depicted the utilization of agents and compared the first fit algorithm 

with the distributed agent-based approach.  

Additionally, Graph 9 presented the plan scores in a graphical format, plotted 

against the plan ID. 
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Graph 4: Rand Task Distribution on network for 400 nodes in Erdos Renyi 

Topology. 

 

Graph 5: Rand Task Distribution on network for 1000 nodes in Erdos Renyi 

Topology. 
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Graph 6: Rand Task Distribution on network for 200 nodes in Erdos Renyi 

Topology. 

 

Table 5: Iteration Mean of Memory Utilization 

Implementation on Memory Utilization 

Cloud 1.3831 

First Fit over Fog 0.2054 

Proposed Distributed Agents over Fog 0.0546 
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Graph 7: Difference between overall memory utilization variance of First Fit 

and Agent based solution under varied parameters 

 

IoT service placement is a middleware service that aims at finding one or more 

eligible deployments that adhere to the QoS expectations of the services. 

Placement of IoT services is a multi-constrained NP-hard problem [9]. Graph 7 
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presents the difference between the overall memory utilization with first fit and 

agent-based solution.  

 
Graph 8: Comparing overall cost by First fit and Agent based approach. 

We saw that our approach based on average on all of the requested tasks for 

different time periods gives competitive results in the currently simulated 
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ecosystem. There are various factors that can be considered here, specifically 

QoS parameters that align with the current experiment of ours. 

 

 

Table 6: Iteration Mean of Overall Cost 

Implementation Type Cost 

Cloud 1.5921 

First Fit over Fog 0.1854 

 
Graph 9: Plan Scores vs Plan ID. 

The whole experiment is to bring out a solution which avoids peak situation and 

also mitigates any situation of such peak situation if it persists. We have 
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presented the results of the overall experiments earlier in the report, which can 

be summed up as a complete overview and comparison of request handling from 

IoT devices where we have  

(i) Increased Quality of Service via minimizing cost related to service 

execution  

(ii)  reduce data traffic by efficiently deploying the solution on an Edge/Fog 

computing environment for IoT requests. We talk about avoiding peak 

situations and have laid out extensive test grounds to support the same. 

The comparison further validates these results better on the grounds mentioned 

and shows a significant improvement in the given subset. The result 

summarized as 

(i) brings forth the efficiency which aligns with overall productivity when 

it comes to application of the solution. Whereas, point  

(ii) defines the working and output of such implementation in real-life 

scenarios and its significance.  

Provision of resources and tackling various technological hurdles for optimal 

fault tolerance is ultimately very crucial and continues to be in the scenario of 

broad spectrum and variety of IoT devices available. The overall analysis can 

be expanded on the grounds of various use cases and on further experimentation 

that increases load with a broader dataset, it can be used for everyday 

application platforms. 

 

We would like to elaborate on one such use case that we have earlier discussed 

in the first half where we mention the deployment of such an ecosystem in 

precision agriculture. For enhancement of overall agricultural output, more 

focus is on data analytics and supported cloud systems. Such advancements in 

the field of cloud computing, specifically Edge/Fog based environment focusing 

on IoT devices helps in application of precision agriculture for IoT field. With 

respect to that, minimizing cost as an objective increases efficiency of IoT 

deployments and distributed load balancing provides a way of focusing on 
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locally improved results to increase robustness of the system and the objectives 

for the same can be extended. 

A decentralized mechanism consisting of nodes distributed in a network 

confirms a feasible and improved manner of load distribution in such a setting 

to decrease total computation time, from sending a request from an IoT device 

to receiving response from edge nodes on an IoT device. 
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Chapter-5  

CONCLUSIONS 

 
5.1 Conclusions  

The internet of things (IoT) is a rapidly growing field, with the increasing 

adoption of IoT devices across multiple disciplines, there is a growing need for 

cost-effective and high-quality computing solutions that can handle the large 

amounts of data generated by these devices. The placement of services on IoT 

devices is an important aspect of optimizing the performance of IoT systems. In 

this study, the authors present a novel approach to service placement of IoT 

devices, utilizing distributed agents for plan generation and selection. 

 

The proposed approach is based on fog computing, which involves distributing 

computing resources closer to the edge of the network, where the IoT devices 

are located. By utilizing distributed agents for plan generation and selection, the 

proposed approach effectively minimizes the cost-of-service execution while 

simultaneously reducing data traffic. The results demonstrate the efficacy of the 

proposed solution in improving the Quality of Service (QoS) and enhancing the 

overall performance of the system. 

 

The authors' focus on cost minimization and QoS improvement is particularly 

important for the development of future computing applications in 

interdisciplinary environments. As the number of IoT devices continues to grow, 

it is critical that we develop efficient, cost-effective, and secure computing 

solutions to handle the large amounts of data generated by these devices and 

enable the full potential of IoT technologies. The proposed method represents a 

step forward in this direction, and it has the potential to contribute to the 

continued growth and development of IoT technologies. 

 

In summary, the proposed approach for service placement of IoT devices using 

distributed agents represents a promising solution for addressing the challenges 

faced by IoT systems. By leveraging fog computing and focusing on cost 
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minimization and QoS improvement, the proposed method has the potential to 

enhance the performance of IoT systems and contribute to the continued growth 

and development of IoT technologies. 

 

5.2 Future Scope  

The proposed approach for service placement of IoT devices using distributed 

agents is a promising solution for addressing the challenges faced by IoT 

systems. With the increasing adoption of IoT devices across multiple 

disciplines, there is a growing need for cost-effective and high-quality 

computing solutions that can handle the large amounts of data generated by 

these devices. The proposed approach aims to minimize the cost-of-service 

execution while simultaneously reducing data traffic, thus improving the overall 

performance of the system and enhancing the Quality of Service (QoS) for end-

users. 

 

There are several areas where further research and development could enhance 

this approach and contribute to the advancement of IoT technologies. One 

potential area is the optimization of the proposed method to handle a larger 

number of IoT devices and services. The scalability of the approach could be 

investigated, and ways to improve the efficiency of plan generation and 

selection could be identified. This could include exploring distributed 

approaches to plan generation and selection, or developing heuristics to 

optimize the placement of services on IoT devices. 

 

Another potential area for future research is the integration of machine learning 

techniques to enhance the decision-making capabilities of the distributed agents. 

Machine learning could be used to learn from historical data and real-time 

analytics to improve service placement decisions and further minimize cost and 

data traffic. This could include exploring techniques such as reinforcement 

learning or deep learning to enable the distributed agents to learn from their 

experiences and adapt to changing conditions. 
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Additionally, the proposed approach could be extended to incorporate security 

and privacy considerations for IoT systems. Security and privacy are critical 

concerns for IoT systems, as these devices often handle sensitive data such as 

personal health information or financial data. The distributed agents could be 

secured using techniques such as encryption or blockchain to ensure that they 

are resilient against cyber-attacks. Furthermore, methods for protecting the 

privacy of sensitive data that may be transmitted or stored on the IoT devices 

could be explored, such as differential privacy or homomorphic encryption. 

 

Overall, the proposed approach represents a promising solution for addressing 

the challenges faced by IoT systems, and there are many avenues for future 

research and development to further enhance the capabilities of this approach 

and contribute to the continued growth and development of IoT technologies. 

As the number of IoT devices continues to grow, it is critical that we develop 

efficient, cost-effective, and secure computing solutions to handle the large 

amounts of data generated by these devices and enable the full potential of IoT 

technologies. 

 

5.3 Applications Contributions 

The proposed approach for service placement of IoT devices using distributed 

agents has significant potential contributions to the field of IoT technologies. 

By using distributed agents, the approach can contribute to the development of 

cost-effective and high-quality computing solutions for handling the large 

amounts of data generated by IoT devices. The distribution of the workload 

between under-utilized and over-utilized processors in MCC can be better 

balanced with the use of a modified first fit algorithm. This leads to improved 

performance and efficient utilization of resources in the IoT environment. 

 

Furthermore, the approach can enhance the Quality of Service (QoS) for end-

users. One of the major issues faced in IoT systems is the high cost-of-service 

execution and data traffic. The proposed approach can reduce these costs by 

minimizing data traffic and balancing the workload in a more efficient manner. 
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This can lead to improved performance and user satisfaction with IoT systems, 

contributing to better adoption and wider use of these technologies. 

 

The proposed approach can also contribute to the development of scalable and 

efficient methods for service placement on IoT devices. By investigating the 

scalability of the approach and identifying ways to optimize plan generation and 

selection, the proposed method can be extended to handle a larger number of 

IoT devices and services. The scalability of the approach can be achieved by 

reducing the time and cost required for service placement in the IoT 

environment. Additionally, the approach can be enhanced by identifying ways 

to optimize plan generation and selection. 

 

The integration of machine learning techniques can further contribute to 

enhancing the decision-making capabilities of the distributed agents. By 

utilizing historical data and real-time analytics, the distributed agents can learn 

and adapt to changing conditions, further minimizing cost and data traffic. 

Machine learning techniques can help in identifying patterns and trends in data 

generated by IoT devices, leading to improved decision-making and better 

resource utilization. This can lead to the development of smarter IoT systems 

that can adapt and optimize themselves according to the changing conditions in 

the environment. 

 

Finally, incorporating security and privacy considerations can contribute to 

ensuring the resilience and protection of IoT systems against cyber-attacks and 

the privacy of sensitive data transmitted or stored on IoT devices. The security 

and privacy of IoT systems are critical issues that need to be addressed for their 

widespread adoption. By incorporating security and privacy considerations into 

the proposed approach, the resilience and protection of IoT systems can be 

enhanced, leading to improved trust and confidence in these technologies. 

 

In conclusion, the proposed approach for service placement of IoT devices using 

distributed agents has several potential contributions to the field of IoT 

technologies. The approach can contribute to the development of cost-effective 
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and high-quality computing solutions for handling the large amounts of data 

generated by IoT devices. Additionally, the approach can enhance the Quality 

of Service (QoS) for end-users by reducing the cost-of-service execution and 

data traffic. The proposed method can also be extended to handle a larger 

number of IoT devices and services by investigating the scalability of the 

approach and identifying ways to optimize plan generation and selection. The 

integration of machine learning techniques can further enhance the decision-

making capabilities of the distributed agents, and incorporating security and 

privacy considerations can contribute to ensuring the resilience and protection 

of IoT systems against cyber-attacks and the privacy of sensitive data 

transmitted or stored on IoT devices. Future research and development can 

further enhance the capabilities of the proposed approach and contribute to the 

continued growth and development of IoT technologies. 
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APPENDICES 

 
Few snippets of important section of codebase is as follows: 

 

       average of task demands (unit of resource) on 10 (5-min) periods from 

minute 10 to minute 60: 

                 CPU    Mem     Storage 

           avg:  100    124     2 

           max:  248    347     3.3 

 

 

           520 < number of tasks < 9527   avg: 3908 

           

the total capacity (unit of resource) of each network is: 

       total CPU capacity: 704.0 

       total Memory capacity: 792.5 

       total storage capacity: 313.5 

       

   */ 

 

public class Infrastructure { 

   //static Dijkstra dijkstra = new Dijkstra(Dijkstra.Element.EDGE, null, 

"length"); 

   private final int numOfNodes; 

   private final int graphNumber; 

   private final String graphType; 

   private int cId; 

       

   //coloring nodes in the topology based on their capacities 

   protected  String  styleSheet = 

                               "node {" + 

                               " fill-color: black;" + 
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                               "}" + 

                               "node.black {" + 

                               " fill-color: black;" + 

                               "}" + 

                               "node.purple {" + 

                               " fill-color: purple;" + 

                               "}" + 

                               "node.blue {" + 

                               "       fill-color: blue;" + 

                               "}"  + 

                               "node.violet {" + 

                               "       fill-color: violet;" + 

                               "}" + 

                               "node.red {" + 

                               " fill-color: red;" + 

                               "}" + 

                               "node.yellow {" + 

                               " fill-color: yellow;" + 

                               "}" + 

                               "node.orange {" + 

                               " fill-color: orange;" + 

                               "}" + 

                               "node.green {" + 

                               " fill-color: green;" + 

                               "}" + 

                               "node.pink {" + 

                               " fill-color: pink;" + 

                               "}"  ; 

 

   Infrastructure(int numNod, int Graphnum, String graphTp) 

   { 

       numOfNodes = numNod; 

       graphNumber = Graphnum; 
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       graphType = graphTp; 

   } 

   public Graph MakeGraph(int graphT){ 

       

       int l = 0; 

       int k = 0; 

       int i = 0; 

       int sum = 0; 

       double totStorage=0.0; 

       double totMem=0.0; 

       double totCPU=0.0; 

       int maxDegree = 0; 

       int minDegree = Integer.MAX_VALUE; 

       int numOfNodeType[] = new int[10]; 

       double[] assWL = new double[]{0.0,0.0,0.0}; 

       double[] CloudCap = new double[]{400,500,200};//capacity of cloud 

node 

       double capacityIF = 1.0 ;//an impact factor to set the capacities of network 

node 

       //set the number of nodes of each type/capacity according to the Google 

cluster machines: 

       double machineProbability[] = new double[] {0.0636, 0.00024, 0.0004, 

0.08008, 0.53856, 0.01008, 0.31004, 0.00416, 0.00008, 0.0004};//10 

       String[] nodeClass = new String 

[]{"C1","C2","B1","B2","B7","A","B3","B4","B5","B6"};//10 values 

       //for graph coloring purpose: 

       String[] uiClass = new String 

[]{"blue","blue","purple","purple","blue","pink","violet","violet","pink","pink

"};//10 

       double[][] nodeCap = new double [][]{ //{Cpu, Mem, Storage}; 

                                               {2.00,2.00,1.0}, 

                                               {2.00,1.50,1.0}, 

                                               {1.50,1.97,1.0}, 
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                                               {1.50,1.75,1.0}, 

                                               {1.50,1.50,0.50}, 

                                               {1.25,1.25,0.50}, 

                                               {1.50,1.25,0.50}, 

                                               {1.50,1.12,0.25}, 

                                               {1.50,1.06,0.25}, 

                                               {1.50,1.03,0.25}, 

                                               };//10 arrays 

       

       

       Graph graph = new SingleGraph("This is a small-

world/Random/BarabasiAlbertGenerator"); 

       System.out.println("generating nodes....."); 

       

       //BarabasiAlbert graph: 

       if(graphT == 0){ 

           //Graph graph = new SingleGraph(graphType); 

           Generator gen = new BarabasiAlbertGenerator(1); // Between 1 and 3 

new links per node added. 

           gen.addSink(graph); 

           gen.begin(); 

           for(i=0; i<numOfNodes-2; i++) {//the actual number of generated 

nodes is numOfNodes; Since Barabasi by default produce 2 nodes at 

initializing graph this modification is necassary. 

               gen.nextEvents();// each event produce one node (node id: 0 to 

numOfNodes-1) 

           } 

           gen.end(); 

       } 

       /*Small-world graph : 

       WattsStrogatzGenerator(n, k , beta). 

       You must provide values for n, k and beta at construction time. 

       You must ensure that k is even, that n  » k  » log(n)  » 1. 
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       Furthermore, beta being a probability it must be between 0 and 1. 

       */ 

       //generate suitable k value for each network size: 

       if (graphT == 1){ 

           switch (numOfNodes) { 

               case 200: k = 6; break; 

               case 400: 

               case 600: k = 8; break; 

               case 800: 

               case 1000: k = 10; break; 

           } 

           Generator gen = new WattsStrogatzGenerator(numOfNodes, k , 0.5); 

           gen.addSink(graph); 

           gen.begin(); 

           while(gen.nextEvents()){} 

           gen.end(); 

           //return graph; 

       } 

       /*Erdos-Renyi- random graph: 

           After n - k steps we obtain a Erdos-Renyi- random graph G(n, p) with p 

= k / (n - 1). 

           In other words the result is the same as if we started with n isolated 

nodes and 

           connected each pair of them with probability p. 

       */ 

       else if(graphT == 2){ 

       // Since usually the generated graph is disconnected we should take care 

of its input parameters to generate enough links between nodes. 

           int lnp = 3*(int)Math.ceil(Math.log(numOfNodes)); 

           System.out.println("lnp "+lnp); 

           Generator gen = new RandomGenerator(lnp, false); 

           gen.addSink(graph); 

           gen.begin(); 
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           while (graph.getNodeCount() < numOfNodes && gen.nextEvents()); 

           gen.end(); 

       } 

       

       //determine required number of nodes of each type using 

:machineprobability*numOfNodes (note that cloud is not included in the 

output array) 

       if (numOfNodes == 200){ 

           for (i=0;i<10;i++){ 

               numOfNodeType[i] = (int) 

Math.floor(machineProbability[i]*numOfNodes);//numOfNodes = 

fog+cloud(1) 

               sum+=numOfNodeType[i]; 

           } 

           capacityIF = 1.0; 

       } 

       else if(numOfNodes == 400){ 

           for (i=0;i<10;i++){ 

           numOfNodeType[i] = (int) 

Math.floor(machineProbability[i]*(numOfNodes-0.5)); 

           sum+=numOfNodeType[i]; 

           } 

           capacityIF = 0.6; 

       } 

       else if(numOfNodes == 600){ 

           for (i=0;i<10;i++){ 

           numOfNodeType[i] = (int) 

Math.floor(machineProbability[i]*(numOfNodes-2.4)); 

           sum+=numOfNodeType[i]; 

           } 

           capacityIF = 0.5; 

       } 

       else if(numOfNodes == 800){ 
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           for (i=0;i<10;i++){ 

           numOfNodeType[i] = (int) 

Math.floor(machineProbability[i]*(numOfNodes-3.4)); 

           sum+=numOfNodeType[i]; 

           } 

           capacityIF = 0.4; 

       } 

       else if(numOfNodes == 1000){ 

           for (i=0;i<10;i++){ 

           numOfNodeType[i] = (int) 

Math.floor(machineProbability[i]*(numOfNodes-5)); 

           sum+=numOfNodeType[i]; 

           } 

           capacityIF = 0.3; 

       } 

       System.out.println("sum of network nodes:"+sum); 
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